
Binary 100-Digit Challenge using IEEE-754 Coded Numerical
Optimization Scenarios (100b-Digit) and V-shape Binary

Distance-based Success History Differential Evolution (DISHv)
Aleš Zamuda

University of Maribor
Maribor, Slovenia
ales.zamuda@um.si

ABSTRACT
This paper proposes a new discrete optimization benchmark 100b-
Digit, a binary discretized version for the 100-Digit Challenge. The
continuous version 100-Digit Challenge utilizing continuous input
parameters for a fitness function was suggested for the competi-
tions at 2019 GECCO and 2019 CEC, while this paper proposes an
extension, a discrete version of the 100-Digit Challenge, discretizing
using an IEEE-754 double precision floating-point representation
for the search space variables.

Furthermore, the paper also presents a viable recent state-of-the-
art algorithm discretization to be applicable on the new 100b-Digit
benchmark. V-shape transfer function is applied for binarization of
the variables from the Distance-based Success History Differential
Evolution (DISH) to create the new DISHv algorithm, which is
then run on the 100b-Digit benchmark. The preliminary results for
the DISHv algorithm are then reported for a basic value-to-reach
termination criterion over 100b-Digit functions. This combination
of 100b-Digit benchmark and DISHv algorithm demonstrates how
to bridge a gap between recent continuous optimizers and different
discrete benchmarks, and vice-versa.

CCS CONCEPTS
•Mathematics of computing→Evolutionary algorithms; Bio-
inspired optimization; Nonparametric statistics; • Theory of com-
putation→Nonconvex optimization;Bio-inspired optimiza-
tion; Stochastic control and optimization; • Computing method-
ologies → Continuous space search; • General and reference →
Evaluation; Performance;

KEYWORDS
continuous optimization, 100-digit challenge, large population size,
Differential Evolution, DISH

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326898

ACM Reference Format:
Aleš Zamuda. 2019. Binary 100-Digit Challenge using IEEE-754 Coded Nu-
merical Optimization Scenarios (100b-Digit) and V-shape Binary Distance-
based Success History Differential Evolution (DISHv). In Genetic and Evolu-
tionary Computation Conference Companion (GECCO ’19 Companion), July
13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3319619.3326898

1 INTRODUCTION
This paper proposes a new discrete optimization benchmark, 100b-
Digit, a binary discretized version for the 100-Digit Challenge. The
continuous version 100-Digit Challenge [23], which utilizes contin-
uous input parameters for a fitness function, was suggested for the
most recent 2019 GECCO and 2019 CEC competitions, while this
paper proposes an extension, a discrete version of the 100-Digit
Challenge. This paper, hence, proposes discretizing the numbers us-
ing an IEEE-754 double precision floating-point representation [17]
for the search space of continuous 100-Digit Challenge functions.
By doing this it brings closer continuous and discrete optimization
algorithm development and also proposes an update to recent and
challenging benchmark following the budget-free largely solved
100-Digit Challenge [31]. Therefore, as because it is dealing with
discrete optimization, this paper is associated with the 2019 GECCO
BB-DOB Workshop, which seeks to cope with the discrete domain
and its application scenarios. The new 100b-Digit benchmark is
one such application scenario, set under research in benchmarking.
This benchmark is target-based and budget-free, similar to BBOB
with COCO [12].

The statistics of 100b-Digit are the same as for the 100-Digit
Challenge [23], i.e., ten test functions’ sums of optimum fitness
matched digits up to ten (hence the “100” in the name), in the best
half performed trial runs of an algorithm. Both 100-Digit challenges
are value-to-reach based. This performance criterion has an advan-
tage of being independent from unrelated alternatives, as opposed
to several ranking-based measures used in some other benchmarks.

Furthermore, the paper also presents demonstrative optimizer
algorithm for the new benchmark, a viable recent state-of-the-art
algorithm discretization to be applicable on the new 100b-Digit
benchmark. The V-shape transfer function V4 from [15] is applied
for binarization of the variables from the Distance-based Success
History Differential Evolution (DISH) [30] to create the new DISHv
algorithm which is then run on 100b-Digit benchmark. The DISHv
algorithm results are then reported for a basic maximum number of
fitness termination criterion over 100b-Digit functions. The DISHv
algorithm is based on the DISHchain algorithm [31], which was
assessed on the original benchmark [23].

1821

https://doi.org/10.1145/3319619.3326898
https://doi.org/10.1145/3319619.3326898

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Aleš Zamuda

Related work is presented in the following Section. Section 3
presents the proposed benchmark and new DISHv algorithm. Sec-
tion 4 reports results as defined in the proposed benchmark. Section
5 provides conclusions with suggestions for future work.

2 RELATEDWORK
In this section, the 100-Digit Challenge is explained in the next
subsection, and then the works from the applied population-based
optimization algorithm are covered in the second subsection.

2.1 100-Digit Challenge
As motivated within the technical report [23], “research on single
objective optimization algorithms often forms the foundation for
more complex scenarios, such as niching algorithms and both multi-
objective and constrained optimization algorithms.” The usefulness
of such research is demonstrated clearly for approaches in complex
mission planning, like underwater glider path planning in deep
ocean scenarios [38, 39], or energy scheduling [10] and spatial
computer vision [34].

As indicated further for the challenge [23], “Traditionally, single
objective benchmark problems are also the first test for new evolu-
tionary and swarm algorithms.”, and this can be demonstrated over
a plethora of algorithms, including the most recent widely applied
SHADE algorithm [26] variants [2, 5, 11, 28, 30, 38].

The goal of benchmarking on the 100-Digit challenge and also
this paper is to understand better “the behavior of swarm and
evolutionary algorithms as single objective optimizers” [23] and,
hence, this paper introduces a modified DISH algorithm to a binary
100-Digit Challenge.

Further motivated in [23], “The SIAM 100-Digit Challenge was
developed in 2002 by Nick Trefethen in conjunctionwith the Society
for Industrial and Applied Mathematics (SIAM) as a test for high-
accuracy computing” [3, 29], specifically, “the challenge was to
solve 10 hard problems to 10 digits of accuracy” and, in a similar
vein, the 100-Digit Challenge is proposed in [23].

The name of the SIAM 100-Digit Challenge is due to as [23] puts
it: “One point was awarded for each correct digit, making the maxi-
mum score 100”. The new “100-Digit Challenge asks contestants to
solve all ten problems with one algorithm, although limited control
parameter tuning for each function is permitted to restore some
of the original contest’s flexibility”, and it defines that the “differ-
ence is that the score for a given function is the average number of
correct digits in the best 25 out of 50 trials.”.

The discretization, as will be presented in next section, is mo-
tivated by [15], where a 15-bit integer without floating point is
binarized on a 5-dimension continuous function, reaching bit res-
olutions maximally up to 10x15=150 bits (mantissa only), and in
this paper a double-precision floating-point representation is added
(adding the exponent), shown on the 100-Digit Challenge functions.

2.2 Population-based Optimization
The base algorithm of theDISHv algorithm is theDISH algorithm [30],
which already includes the computational mechanisms like those
from the basic architecture of Differential Evolution (DE) [25]
(population-based optimization, mutation, crossover, and selection
over floating-point vectors), the Success-History based Adaptive

Differential Evolution (SHADE) algorithm [26] (parameter adapta-
tion with external archive and historical control parameter mem-
ory), and its updates L-SHADE [28] (linear decrease in population
size) and jSO [5] (parameterization and weighted mutation).

More about the population based optimization and DE develop-
ment can be read in reviews like [1, 7, 18, 21, 22, 27]. As covered
recently in [38], similarly for L-SHADE, DISH is also an extension
of the basic Differential Evolution (DE), as a floating-point encoding
evolutionary algorithm [9] for global optimization over continuous
spaces.

Several recent surveys and insights exist with the DE algorithm’s
base name [6–8, 16, 21, 35] and its metaphors [4, 24], stemming
from the progress on computational mechanisms, mainly from
the branches of the DE, as well as applications [7, 10, 20, 34, 38].
Binary versions of DE have been published before in the works
like [13, 14, 19].

The basic DE [25] consists of an evolutionary loop, within which
are evolved new population D-dimensional population vectors
xi , ∀i ∈ {1, 2, ...,NP}. During each generation step number д ∈
{1, 2, ...,G}, computational operators like mutation, crossover, and
selection of the population are performed, until a termination crite-
rion is satisfied, like a fixed number of maximum fitness evaluations
(MAX_FES). L-SHADE and the DISH extend DE with population
size reduction [28], that was already introduced to DE in contin-
uous optimization and real-world industry challenges [33], and
a well performing parameter control mechanism, named Success
History (SH) [28]. The DISH algorithm’s underlying L-SHADE
variants have won several recent evolutionary benchmarking com-
petitions [2, 5, 11, 26, 28].

Given that the benchmark [23] contains the code for L-SHADE in
C++ language, and that [31] is also written in C++ language (as well
as [5]), in the following the listings are provided for code changes
from DISHchain to DISHv. Namely, the core algorithm code file is
unchanged (lshade.cc), only file search_algorithm.cc (seen in
Fig. 4 is updated for the specific search algorithm.

3 PROPOSED 100B-DIGIT BENCHMARK AND
DISHV ALGORITHM

This section introduces the new discrete benchmark 100b-Digit in
the next subsection, and then the subsection following it demon-
strates a new algorithm, DISHv, used with this benchmark.

3.1 New Benchmark: 100b-Digit
The new benchmark, 100b-Digit, presents discretizing 100-Digit
Challenge with IEEE-754 binary coded numerical optimization sce-
narios. In Table 1 the new 100b-Digit challenge basic test functions
based on the 100-Digit Challenge functions and features are pro-
vided, addressing deep understanding of the problem at hand and
the features that make instances of the problem hard for these algo-
rithms. The properties of the functions and binarization parameters
are, hence, listed in Table 1.

The first column in Table 1 lists the consecutive problem number
(No.), which is same as for the 100-Digit Challenge [23]. The second
column in Table 1 highlights the number of required trials for each
problem; it is a constant at 50 for each problem. The third column
in Table 1 is the name of the problem on which a test function is

1822

Binary 100-Digit Challenge using IEEE-754 (100b-Digit) and DISHv GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Figure 1: DISHv algorithm pseudocode with evaluation and binarization perspectives: V4 transfer function binarized DIstance-
Based Success History Differential Evolution. The pseudocode outline is based on original DISH pseudocode (for continuous
optimization), see [30].

1: Set NPinit, NPf, H, and stopping criterion;
2: NP = NPinit, G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø;
3: Randomly initialize population P = (x1,G ,. . . ,xNP,G) where

∀i : xi,G = {x1,i ,x2,i , ...,xD,i } in generation G;
4: Binarize: ∀i, j : xBi, j = U [0, 1] < |(2π arctan

(π
2 xi, j

)
|

5: Evaluate ∀i f (xi,G) := f B(xBi,G)

6: Set all values inMF to 0.5 andMCR to 0.8;
7: Pnew = {}, xbest = best from population P ;
8: while stopping criterion not met do
9: SF = Ø, SCR = Ø;
10: for i = 1 to NP do
11: r =U[1, H];
12: if r = H then
13: MF,r = MCR,r = 0.9;
14: end if
15: if MCR,r < 0 then
16: CRi,G = 0;
17: else
18: CRi,G = N(MCR,r , 0.1);
19: end if
20: Fi,G = C

[
MF,r , 0.1

]
;

21: if G < 0.6GMAX and Fi,G > 0.7 then
22: Fi,G = 0.7;
23: end if
24: if G < 0.25GMAX then
25: CRi,G = max(CRi,G , 0.7);
26: else if G < 0.5GMAX then
27: CRi,G = max(CRi,G , 0.6);
28: end if
29: xi,G = P[i], pi = U [pmin, 0.2];

30: Fw =

0.7 × F , FES < 0.2MAXFES,

0.8 × F , FES < 0.4MAXFES,

1.2 × F , otherwise.
31: vi,G = xi + Fw (xpBest − xi) + F (xr1 − xr2);

32: uj,i,G =

{
vj,i if U [0, 1] ≤ CRi or j = jrand
x j,i otherwise ;

33: Binarize: ∀i, j : uBi, j = U [0, 1] < |(2π arctan
(π
2 ui, j

)
|

34: Evaluate ∀i f (ui,G) := f B(uBi,G)

35: if f B(ui,G) ≤ f B(xi,G) then
36: xi,G+1 = ui,G ;
37: else
38: xi,G+1 = xi,G ;
39: end if
40: if f B(ui,G) < f B(xi,G) then
41: xi,G → A;
42: Fi → SF , CRi → SCR ;
43: end if
44: if |A|>NP then
45: Randomly delete |A|–NP individuals from A;
46: end if
47: xi,G+1→ Pnew;
48: end for
49: Calculate NPnew according to:

NPnew = round
(
NP0 −

F ES
MAXFES (NP0 − NP f)

)
;

50: if NPnew < NP then
51: Sort individuals in P according to their objective function

values and remove NP – NPnew worst ones;
52: NP = NPnew;
53: end if
54: if |A|>NP then
55: Randomly delete |A|–NP individuals from A;
56: end if

UpdateMF,k ,MCR,k using Lehmer mean:
57: if SF , Ø and SCR , Ø then

58: wk =

√∑D
j=1 (uk, j,G−xk, j,G)2∑ |SCR |

m=1

√∑D
j=1 (um, j,G−xm, j,G)

2

59: meanWL (S) =
∑|S|
k=1wk •S2

k∑|S|
k=1wk •Sk

;

60: MF ,k =

{
meanWL (SF) if SF , ∅

MF ,k otherwise

61: MCR,k =

{
meanWL (SCR) if SCR , ∅

MCR,k otherwise
62: Increase k := k + 1 and if new k > H , reset k to 1;
63: end if
64: P = Pnew, Pnew = {}, xbest = best from population P , G++;
65: end while
66: return xbest as the best found solution;

based. The fourth column in Table 1 lists the number of continuous
variables Dc the function exhibits with continuous search space
of the original benchmark [23] before transformation to this new
binary benchmark (100b-Digit). The fifth column in Table 1 defines
the continuous search variable x limits. The sixth column in Table 1
defines the optimum of the functions, F (x∗), which is equal to 1 for
each function in the benchmark, as in [23]. Columns 7-10 in Table 1
list features of the functions, like separable, multimodal, shifted,

and rotated, respectively, demonstrating that the benchmark is
comprised of complex optimization functions.

Columns 11-14 in Table 1 list the encoding aspect of the bina-
rization transformation. Namely, the IEEE-754 compilant double
precision floating-point numbers are comprised upon composition
of these bits. The IEEE-754 encoding uses an exponent mask, which
masks the bits of an otherwise 11-bit exponent down to 4-bit (func-
tions 1 and 2), 3-bit (function 4–10), or 2-bit (function 3). This is
because the exponent is defined by the power of 2, and, e.g., 4 bits

1823

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Aleš Zamuda

Figure 2: Discretization function under SHADE framework for the 100b-Digit Challenge.
// the part of a black -box function: use the CEC2019 to optimize over binary sequence

F i t n e s s d i s c r e t i z e d _ c e c 1 9 _ t e s t _ f u n c (bool x [] , double ∗ f , int nx , int mx , int func_num) {
static double cont inuousX [1 0 0 0] ; // increase the buffer size when D > 1000

unsigned long long exponentL imi tMask ;
// 12 bit limit => 8192 = 2 ^ 12 => exponent limit mask is 4-bit , since 2^4=16 >= 12

if (func_num == 1) exponentL imi tMask = 0 b00000001111 ;
else if (func_num == 2) exponentL imi tMask = 0 b00000001111 ;
if (func_num == 3) exponentL imi tMask = 0 b0000000011 ;
else exponentL imi tMask = 0 b00000000111 ;

for (int i = 0 ; i < mx ; i ++) {
for (int j = 0 ; j < nx / 6 4 ; j ++)

cont inuousX [j] = b i t sToDoub l e IEEE754 (x + 6 4 ∗ (j + nx ∗ i) , exponentL imi tMask) ;

c e c 1 9 _ t e s t _ f u n c (cont inuousX , &f [i] , nx / 6 4 , 1 , func_num) ;
}

}

Figure 3: Utility functions for IEEE-754 double-precision calculations.
unsigned long b i tA r r a yTo I n t 6 4 (bool b i t s [] , int count) {

unsigned long conve r t ed = 0 ;
unsigned long tmp ;
for (int i = 0 ; i < count ; i ++) {

tmp = b i t s [i] ;
c onve r t ed | = tmp << (count − i − 1) ; // collect the bits

}
return conve r t ed ;

}

double b i t sToDoub l e IEEE754 (bool x [] , const unsigned long long &exponentL imi tMask) {
unsigned long long s i gn = x [0] ; // if 1 the number is negative

unsigned long long exponent = b i tA r r a yTo I n t 6 4 (x +1 , 1 1) ;
unsigned long long mant i s s a = b i tA r r a yTo I n t 6 4 (x +12 , 5 2) ;

exponent &= exponentL imi tMask ; // apply mask

exponent += 0 b01111111111 ; // set bit 62 to 1 (+1023)

unsigned long long bi t s64num = (s i gn << 63) | (exponent << 52) | man t i s s a ; // compose binary64

return ∗ reinterpret_cast <double ∗ >(& bi t s64num) ;
}

Figure 4: DISHv algorithm code patch under SHADE framework.
void s e a r chA lgo r i t hm : : e v a l u a t e P o pu l a t i o n (const vec to r < I n d i v i d u a l > &pop , vec to r < F i t n e s s > & f i t n e s s) {

for (int i = 0 ; i < pop_ s i z e ; i ++) {
// convert to binary before evaluation - on the part of the EA

static bool t r a n s f e r r e dX b i n a r i z e d [6 4 ∗ 1 0 0 0] ; // increase buffer when D > 1000

for (int j = 0 ; j < p rob l em_s i z e ; j ++) {
double t r a n s f e r r e dX = f a b s (2 / P I ∗ a tan (P I / 2 ∗ pop [i] [j])) ; // apply V-shape

bool binT = randDouble () < t r a n s f e r r e dX ; // binarize

t r a n s f e r r e dX b i n a r i z e d [j] = binT ;
}
d i s c r e t i z e d _ c e c 1 9 _ t e s t _ f u n c (t r a n s f e r r e dX b i n a r i z e d , & f i t n e s s [i] , p rob l em_s i z e , 1 , func t ion_number) ;

}
}

void s e a r chA lgo r i t hm : : i n i t i a l i z e F i t n e s s F u n c t i o n P a r am e t e r s () {
// Discretizes CEC2019 transfer function

max_region = 8 ;
min_reg ion = −8;
// epsilon is an acceptable error value

e p s i l o n = pow (1 0 . 0 , −11) ;
optimum = 1 ;

}

1824

Binary 100-Digit Challenge using IEEE-754 (100b-Digit) and DISHv GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

are sufficient to represent 24=16-bit exponent — i.e. numbers upto
16384 are representable using 4 bits, like for the range used for x
using function 2.

Column 13 in Table 1 depicts how to calculate the bit-width
of a search vector |xB |. The last column in Table 1 then lists the
effective dimension D of the new binarized functions. The binary
functions’ dimensions range from D = 570 upto D = 1008, which
exceeds, e.g., the 15-bit integer without floating point when the
binarized 5-dimension continuous function reaches bit resolutions
maximally up to 10x15=150 bits in [15]. To calculate D, the number
of continuous variables is multiplied by the bitstring length of a
binary variable for each function from columns 11-13: 53 bits for
mantissa, bits of the exponent, and a sign bit. Table 1 therefore
provides further insight for developers of new algorithms for this
benchmark. As seen from the columns for exponent and mantissa
representtion, the binarization and masking used allow the prob-
lem variable to be encoded with high precision at low bit length,
hence, making the information about the fitness function dense. By
changing number of underlying continuous variables Dc and their
definition intervals it would also be possible to change the dimen-
sions and hence hardness of the problems, making the benchmark
simply scalable.

To convert the C++ code of the benchmark to a binary version,
the search_algorithm.c code of L-SHADE framework is updated
with a patch, as listed in Fig. 2. The proposed benchmark uses a
utility code, as listed in Fig. 3, to convert the bitstring to an IEEE-754
double, where a bit-mask is applied to cap the exponent (exponent
&= exponentLimitMask;) in the bitsToDoubleIEEE754 function.
Namely, for each test function, the mantissa is the most impor-
tant limiter of value range to search for and, hence, the 100b-Digit
defines a bit-aligned range for the exponent encoding the double-
precision floating-point. The bits64num denotes a list of 64 bits that
are represented in a 64-bit unsigned long long number composed
by shifting 64 bits bk in place of the IEEE-754 double-precision
floating-point format [17] bits representation on a little-endian ma-
chine. The bits64num is converted to C++ double type by calling
reinterpret cast as *reinterpret_cast<double*>(&bits64num)
for values of bits bk , ∀k = 0, 1, ..., 63, taken from a D-dimenzional
array of binarized DE vector values xB = {b1,b2, ...,b63}Dc that
compositely represent Dc continuous variables x j , j = 1, 2, ...,Dc
to be used when calling the original 100-Digit functions in Table 1:

xj ←− (−1)b63
(
1 +

52∑
k=1

2−kb52−k

)
× 2−1023+

∑62
k=52 2

k−52bk , (1)

while exponent bits (k = {52, 53, ..., 62}) are never all equal, there-
fore the IEEE-754 subnormal representation and NaN representa-
tion are both avoided. This is due to previously described masking
with exponentLimitMask that keeps some zero bits at beginning
(e.g. if a mask is 1111(2), after masking 5 bits b57, b58, ..., b61 are 0)
and b62 = 1.

Using function discretized_cec19_test_func in Fig. 2, the
collection of discretized binary numbers takes place, putting the
numbers together and calling a regular 100-Digit Challenge func-
tion. Note also, in main.c, the g_problem_size_arr elements are
multiplied by 64, since each bit now has its own DE component.

Provided that there are numerical optimization competitions
at CEC with a series of long-term track of DE optimization algo-
rithm variants taking place and winning in most cases [32], a DE
algorithm is also applied demonstratively to the new 100b-Digit
benchmark for baseline, as described in next section. Also, due to
the V4 shape [15], the search parameters for DISHv are limited to
[-8,8] in initializeFitnessFunctionParameters, see Fig. 4.

3.2 DISHv Algorithm
The DISHv algorithm upgrades the DISHchain algorithm with dis-
cretization, as proposed with the V4 transfer function in V-shaped
binarization functions from [15]. In order to define DISHv thor-
ougly, the pseudocode of the algorithm is provided in Fig.1 for the
sake of clarity. The pseudocode outline is based on the original
continuous DISH pseudocode [30]. Within the DISHv algorithm
pseudocode, the perspectives of evaluation and binarization are
additionally highlighted, therefore they are put in underline text
font and blue color. The binarization with V4 transfer function
is provided in lines 4 and 33, and the evaluation function use in
lines 5 and 34.U [0, 1] denotes a uniform random continuous func-
tion between 0 and 1. Negative values are also a valid input to the
arctan function [15]. The rest of the pseudocode in Fig.1 defines
the DISH algorithm [30]: Lines 1–3 and 6–8 apply initial parameter
settings and population initialization. Then the generations’ loop
at line 8 runs, selecting the DE mutation indexes in line 11, then
applying control parameter adaptation in lines 12–30, and followed
by mutation in line 31 and crossover in line 32. The new binariza-
tion and evaluation are again used within the generations’ loop
through lines 33–48, where selection operator is applied. Popula-
tion structuring with archive strategy and population sizing then
follows in lines 49–56. Then, lines 57–63 apply the distance-based
control parameters‘ adaptation (hence the name of DISH). Line 64
switches generations’ pointers, and line 66 then returns the best
found solution.

Explained in the plain level of L-SHADE C++ codebase provided
within demonstration files of the 100-Digit Challenge, in the follow-
ing, the newly added (as of this paper) code functions, and other
necessary changes, are listed as follows. To evaluate the population,
L-SHADE code calls evaluatePopulation function, which bina-
rizes the parameters effectively by transfer function (transferredX
= fabs(2/PI * atan(PI/2*pop[i][j]))), and then calls the C++
function discretized_cec19_test_func to perform optimization
over binary variables. The code listing is provided in Fig. 4.

4 RESULTS
The DISHv algorithm is assessed using the maximum number
of fitness evaluations (MAX_FES) termination criterion. The fifty
runs for each function sorted by the number of correct digits [23]
is provided as Table 2 using MAX_FES = 1e+6, Table 3 using
MAX_FES = 1e+7, Table 4 using MAX_FES = 1e+8, and Table 5
using MAX_FES = 1e+9.

As required in [23], over MAX_FES=1e+6, Table 2 (and Table 3
usingMAX_FES =1e+7) “lists for each function the number of trials
in a run of 50 that found n correct digits, where n = 1, 2, ..., 10. In
the final column is entered the average number of correct digits in
the best 25 runs, i.e. the score for that function. The total score is

1825

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Aleš Zamuda

Table 1: The new 100b-Digit Challenge Basic Test Functions, based on the 100-Digit Challenge, and their features [23].

No. Trials Name Dc x range F (x∗) Separable Multimodal Shifted Rotated Exponent mask Mantissa |xB | D

1 50 Storn’s Cheby-
shev Polyno-
mial Fitting
Problem

9 [-8192, 8192] 1 N Y N N 4-bit: 1111(2) 53-bit 9 x 58-bit 522

2 50 Inverse Hilbert
Matrix Problem

16 [-16384, 16384] 1 N Y N N 4-bit: 1111(2) 53-bit 16 x 58-bit 928

3 50 Lennard-Jones
Minimum
Energy Cluster

18 [-4,4] 1 N Y N N 2-bit: 11(2) 53-bit 18 x 56-bit 1008

4 50 Rastrigin’s
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

5 50 Griewangk’s
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

6 50 Weierstrass
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

7 50 Modified
Schwefel’s
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

8 50 Expanded
Schaffer’s F6
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

9 50 Happy Cat
Function

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

10 50 Ackley Func-
tion

10 [-100,100] 1 N Y Y Y 3-bit: 111(2) 53-bit 10 x 57-bit 570

Table 2: Fifty runs for each function sorted by the number
of correct digits (for the DISHv algorithm), MAX_FES=1e+6.

Function Number of correct digits Score
0 1 2 3 4 5 6 7 8 9 10

1 50 0 0 0 0 0 0 0 0 0 0 0
2 50 0 0 0 0 0 0 0 0 0 0 0
3 50 0 0 0 0 0 0 0 0 0 0 0
4 50 0 0 0 0 0 0 0 0 0 0 0
5 50 0 0 0 0 0 0 0 0 0 0 0
6 50 0 0 0 0 0 0 0 0 0 0 0
7 50 0 0 0 0 0 0 0 0 0 0 0
8 50 0 0 0 0 0 0 0 0 0 0 0
9 50 4 0 0 0 0 0 0 0 0 0 0.16
10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 0.16

entered (the sum of the scores for all 10 functions) in the bottom
right-hand cell.” The reported DISHv algorithm score over the ex-
periments from Tables 2–5 is, hence, 0.04 for 1e+6, 1 for 1e+7, 2.08
for 1e+8, and 3.04 for 1e+9 MAX_FES, respectively. As seen with
gradual increase of score, this new 100b-Digit benchmark there-
fore provides a much bigger challenge than the original CEC-75
100-Digit benchmark.

Table 3: Fifty runs for each function sorted by the number
of correct digits (for the DISHv algorithm), MAX_FES=1e+7.

Function Number of correct digits Score
0 1 2 3 4 5 6 7 8 9 10

1 50 1 0 0 0 0 0 0 0 0 0 0.04
2 50 0 0 0 0 0 0 0 0 0 0 0
3 50 0 0 0 0 0 0 0 0 0 0 0
4 50 0 0 0 0 0 0 0 0 0 0 0
5 50 0 0 0 0 0 0 0 0 0 0 0
6 50 0 0 0 0 0 0 0 0 0 0 0
7 50 0 0 0 0 0 0 0 0 0 0 0
8 50 0 0 0 0 0 0 0 0 0 0 0
9 50 50 0 0 0 0 0 0 0 0 0 1
10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 1.04

The reported results are preliminary and first benchmark re-
sults for an algorithm with this new benchmark. It is seen, that the
benchmark is not easy to solve and shall pose interesting challenge
ahead for researchers to tackle it. With possible further extended
time [36], it is expected that adding higher values of MAX_FES
would increase the DISHv algorithm score on the 100b-Digit bench-
mark. Therefore the obtained best fitness values f (xB) at the end
of each trial run of the DISHv algorithm using 1e+7, averaged over

1826

Binary 100-Digit Challenge using IEEE-754 (100b-Digit) and DISHv GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

Table 4: Fifty runs for each listed function sorted by
the number of correct digits (for the DISHv algorithm),
MAX_FES=1e+8.

Function Number of correct digits Score
0 1 2 3 4 5 6 7 8 9 10

1 50 49 2 0 0 0 0 0 0 0 0 1.08
2 50 0 0 0 0 0 0 0 0 0 0 0
3 50 0 0 0 0 0 0 0 0 0 0 0
4 50 0 0 0 0 0 0 0 0 0 0 0
5 50 0 0 0 0 0 0 0 0 0 0 0
6 50 0 0 0 0 0 0 0 0 0 0 0
7 50 0 0 0 0 0 0 0 0 0 0 0
8 50 0 0 0 0 0 0 0 0 0 0 0
9 50 50 0 0 0 0 0 0 0 0 0 1
10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 2.08

Table 5: Fifty runs for each listed function sorted by
the number of correct digits (for the DISHv algorithm),
MAX_FES=1e+9.

Function Number of correct digits Score
0 1 2 3 4 5 6 7 8 9 10

1 50 50 50 0 0 0 0 0 0 0 0 2
2 50 0 0 0 0 0 0 0 0 0 0 0
3 50 0 0 0 0 0 0 0 0 0 0 0
4 50 0 0 0 0 0 0 0 0 0 0 0
5 50 0 0 0 0 0 0 0 0 0 0 0
6 50 0 0 0 0 0 0 0 0 0 0 0
7 50 0 0 0 0 0 0 0 0 0 0 0
8 50 0 0 0 0 0 0 0 0 0 0 0
9 50 50 1 0 0 0 0 0 0 0 0 1.04
10 50 0 0 0 0 0 0 0 0 0 0 0

Total: 3.04

Table 6: Obtailed best fitness values f (xB) at the end of each
trial run of the DISHv algorithm using 1e+7, averaged over
50 runs.

Function Average f B(xB) − 1 Standard deviation of f B(xB)
1 5.177e+00 4.527e+00
2 9.134e+00 1.488e+00
3 8.514e+00 4.059e-01
4 5.634e+01 6.408e+00
5 1.865e+01 5.228e+00
6 7.080e+00 4.757e-01
7 1.241e+03 1.274e+02
8 3.569e+00 1.713e-01
9 6.451e-01 1.054e-01
10 2.015e+01 3.426e-02

50 runs, are listed demonstratively in Table 6 for reference values.
Moreover, as the obtained scores are still very low, this suggests
that more interesting benchmarking can be applied using the likes
of the proposed DISHv and 100b-Chain combination.

5 CONCLUSIONS
This paper proposed a new 100-Digit Challenge, the binarized 100b-
Digit Challenge. Then, the algorithm DISHv was proposed and
assessed on this new 100b-Digit Challenge on Single Objective Nu-
merical Optimization. The DISHv algorithm results were presented
according to the specification of report [23]. The new benchmark
consists of problems of very high dimension (522 – 1008), which
makes them very challenging after discretization from underlying
continuous space. This is clearly visible in Tables 2-5, where hardly
any problems were solved with accuracy of more than 1 digit, de-
spite using a variant of the state-of-the-art DE algorithm. With the
original 100-Digit Challenge possibly being solved soon [31], the
new 100b-Digit Challenge still remains largely unsolved.

By describing how to discretize a real test benchmark using
limited exponent mask for floating-point variables through IEEE-
754 binarization, and then how to apply a transfer function over an
existing continuous optimizer to enhance it to become applicable on
discrete problems, this combination of 100b-Digit benchmark and
DISHv algorithm demonstrates how to bridge a gap between recent
continuous optimizers and different discrete benchmarks. Also,
vice-versa, this demonstrates how to bridge a gap between recent
discrete benchmarks and different continuous optimizers. It also
takes an algorithm from contains domain and demonstrates how to
combine it for pligging in to the discrete domain benchmark, which
might encourage applicability of search algorithm development
with different domains and studying their mechanisms.

In future work, the proposed benchmark discretization and al-
gorithm enhancements might be proposed to other benchmarks
and algorithms, respectively. Hence, the discretization mechanism
presented in this paper might become important for bridging the
gap between discrete and continuous optimization algorithms and
their applicability. By changing number of underlying continuous
variables Dc and their definition intervals would also change the di-
mension and hence hardness of the problems, making them scalable.
Another line worth investigating thoroughly is whatmany easy con-
tinuous problems may result in quite hard discrete problems with
this encoding, especially when the optimum is not at all-zeros. Also,
by using some other rule than selecting half best runs, a different
benchmark could be established to assign the scores, which opens
a whole new horizon to research. DISH-based algorithms might
also be applied to other real world applications, like deep ocean
underwater glider path planning. Additionally, as single objective
benchmark problems can be transformed into dynamic, niching
composition, computationally expensive, and many other classes of
problems, the proposed benchmark could also be extended to such
classes. Another interesting aspect of algorithm implementation
on HPC systems is also evaluation of parallelization strategies over
value-to-reach goals, to compute the benchmark using any HPC ap-
proach. There also exists plethora of additional search mechanisms,
e.g. SQP local search [37] or mixed-integer, which might later be
hybridized for special-purpose population algorithms, such as for

1827

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Aleš Zamuda

the new 100b-Digit Challenge domain. One important further work
is also landscape analysis of the new benchmark functions.

ACKNOWLEDGMENTS
This paper is based upon work from COST Action CA15140 "Im-
proving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO)" supported by COST. This paper is
also based upon work from COST Action IC1406 High-Performance
Modelling and Simulation for Big Data Applications (cHiPSet), sup-
ported by COST (European Cooperation in Science and Technology).
The author acknowledges the financial support from the Slovenian
Research Agency (Research Core Funding No. P2-0041) and EU
support under Project No. 5442-24/2017/6 (HPC – RIVR). Thanks
also to the two anonymous reviewers.

REFERENCES
[1] Rawaa Dawoud Al-Dabbagh, Ferrante Neri, Norisma Idris, and Mohd Sapiyan

Baba. 2018. Algorithmic design issues in adaptive differential evolution schemes:
Review and taxonomy. Swarm and Evolutionary Computation 43 (2018), 284–311.

[2] Noor H. Awad,Mostafa Z. Ali, Ponnuthurai N. Suganthan, and Robert G. Reynolds.
2016. An Ensemble Sinusoidal Parameter Adaptation incorporatedwith L-SHADE
for Solving CEC2014 Benchmark Problems. In 2016 IEEE World Congress on
Computational Intelligence (IEEE WCCI 2016), Vancouver, Canada. 2958–2965.

[3] Folkmar Bornemann, Dirk Laurie, Stan Wagon, and JÓrg Waldvogel. 2004. The
SIAM 100-digit challenge: a study in high-accuracy numerical computing. Vol. 86.
SIAM.

[4] Ilhem Boussaïd, Julien Lepagnot, and Patrick Siarry. 2013. A survey on optimiza-
tion metaheuristics. Information Sciences 237 (2013), 82–117.

[5] J. Brest, M. Sepesy Maučec, and B. Bošković. 2017. Single objective real-parameter
optimization: algorithm jSO. In 2017 IEEE Congress on Evolutionary Computation.
1311–1318.

[6] Swagatam Das, Sayan Maity, Bo-Yang Qu, and Ponnuthurai Nagaratnam Sugan-
than. 2011. Real-parameter evolutionary multimodal optimization – A survey of
the state-of-the-art. Swarm and Evolutionary Computation 1, 2 (2011), 71–88.

[7] Swagatam Das, Sankha Subhra Mullick, and P.N. Suganthan. 2016. Recent ad-
vances in differential evolution – An updated survey. Swarm and Evolutionary
Computation 27 (2016), 1–30.

[8] S. Das and P. N. Suganthan. 2011. Differential Evolution: A Survey of the State-
of-the-art. IEEE Transactions on Evolutionary Computation 15, 1 (2011), 4–31.

[9] A. E. Eiben and J. E. Smith. 2003. Introduction to Evolutionary Computing (Natural
Computing Series). Springer.

[10] A. Glotić and A. Zamuda. 1 March 2015. Short-term combined economic and
emission hydrothermal optimization by surrogate differential evolution. Applied
Energy 141 (1 March 2015), 42–56.

[11] Shu-Mei Guo, Jason Sheng-Hong Tsai, Chin-Chang Yang, and Pang-Han Hsu.
2015. A self-optimization approach for L-SHADE incorporated with eigenvector-
based crossover and successful-parent-selecting framework on CEC 2015 bench-
mark set. In Evolutionary Computation (CEC), 2015 IEEE Congress on. IEEE, 1003–
1010.

[12] N. Hansen, A Auger, D. Brockhoff, D. Tušar, and T. Tušar. 2016. COCO: Perfor-
mance Assessment. ArXiv e-prints arXiv:1605.03560 (2016).

[13] Dongli Jia, Xintao Duan, and Muhammad Khurram Khan. 2013. An Efficient
Binary Differential Evolution with Parameter Adaptation. International Journal
of Computational Intelligence Systems 6, 2 (2013), 328–336.

[14] Tao Li, Hongbin Dong, and Jing Sun. 2019. Binary differential evolution based
on individual entropy for feature subset optimization. IEEE Access (2019).

[15] Seyedali Mirjalili and Andrew Lewis. 2013. S-shaped versus V-shaped transfer
functions for binary particle swarm optimization. Swarm and Evolutionary
Computation 9 (2013), 1–14.

[16] F. Neri and V. Tirronen. 2010. Recent Advances in Differential Evolution: A
Survey and Experimental Analysis. Artificial Intelligence Review 33, 1–2 (2010),
61–106.

[17] Microprocessor Standards Committee of the IEEE Computer Society. 2008. IEEE
Std 754™-2008 (Revision of IEEE Std 754-1985), IEEE Standard for Floating-
Point Arithmetic. Standards (2008), 1–70. https://doi.org/10.1109/IEEESTD.2008.
4610935

[18] Karol R Opara and Jarosław Arabas. 2019. Differential Evolution: A survey of
theoretical analyses. Swarm and evolutionary computation 44 (2019), 546–558.

[19] Gary Pampara, Andries Petrus Engelbrecht, and Nelis Franken. 2006. Binary
differential evolution. In 2006 IEEE International Conference on Evolutionary Com-
putation. IEEE, 1873–1879.

[20] Raghav Prasad Parouha and Kedar Nath Das. 2016. DPD: An intelligent parallel
hybrid algorithm for economic load dispatch problems with various practical
constraints. Expert Systems with Applications 63 (2016), 295–309.

[21] Adam P Piotrowski. 2017. Review of Differential Evolution population size.
Swarm and Evolutionary Computation 32 (2017), 1–24.

[22] Adam P Piotrowski and Jaroslaw J Napiorkowski. 2018. Step-by-step improve-
ment of JADE and SHADE-based algorithms: Success or failure? Swarm and
evolutionary computation 43 (2018), 88–108.

[23] K. V. Price, N. H. Awad, M. Z. Ali, and P. N. Suganthan. 2018. The 100-Digit
Challenge: Problem Definitions and Evaluation Criteria for the 100-Digit Chal-
lenge Special Session and Competition on Single Objective Numerical Optimization.
Technical Report, Nanyang Technological University, Singapore, November 2018.
Vacaville, California, USA and School of EEE, Nanyang Technological University,
Singapore and School of Computer Information Systems, Jordan University of
Science and Technology, Jordan.

[24] Kenneth Sörensen. 2015. Metaheuristics—the metaphor exposed. International
Transactions in Operational Research 22, 1 (2015), 3–18.

[25] R. Storn and K. Price. 1997. Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization 11 (1997), 341–359.

[26] Ryo Tanabe and Akira Fukunaga. 2013. Evaluating the performance of SHADE
on CEC 2013 benchmark problems. In 2013 IEEE Congress on Evolutionary Com-
putation. IEEE, 1952–1959.

[27] Ryoji Tanabe and Alex Fukunaga. Date of Publication 25 January 2019 (in press).
DOI: 10.1109/TCYB.2019.2892735. Reviewing and Benchmarking Parameter
Control Methods in Differential Evolution. IEEE Transactions on Cybernetics (Date
of Publication 25 January 2019 (in press). DOI: 10.1109/TCYB.2019.2892735).

[28] Ryoji Tanabe and Alex S Fukunaga. 2014. Improving the search performance
of SHADE using linear population size reduction. In 2014 IEEE Congress on
Evolutionary Computation. IEEE, 1658–1665.

[29] Lloyd N Trefethen. 2002. The $100, 100-Digit Challenge. SIAM News 35 (2002),
1–3.

[30] Adam Viktorin, Roman Senkerik, Michal Pluhacek, Tomas Kadavy, and Aleš Za-
muda. Available online 12 November 2018. Distance Based Parameter Adaptation
for Success-History based Differential Evolution. Swarm and Evolutionary Com-
putation (Available online 12 November 2018). https://doi.org/10.1016/j.swevo.
2018.10.013

[31] A. Zamuda. 2019. Function Evaluations Upto 1e+12 and Large Population Sizes
Assessed in Distance-based Success History Differential Evolution for 100-Digit
Challenge and Numerical Optimization Scenarios (DISH-chain1e+12): A com-
petition entry for "100-Digit Challenge, and Four Other Numerical Optimiza-
tion Competitions" at The Genetic and Evolutionary Computation Conference
(GECCO) 2019. In Genetic and Evolutionary Computation Conference Companion
(GECCO âĂŹ19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3319619.3326751.

[32] A. Zamuda. April 2016. Differential Evolution and Large-Scale Optimization
Applications. IGI Global, InfoSci-Videos (April 2016). https://doi.org/10.4018/
978-1-5225-0729-1

[33] A. Zamuda and J. Brest. 2012. Population Reduction Differential Evolution with
Multiple Mutation Strategies in Real World Industry Challenges. In Swarm and
Evolutionary Computation (Lecture Notes in Computer Science), Leszek Rutkowski,
Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi Zadeh, and Jacek
Zurada (Eds.). Springer, 154–161.

[34] A. Zamuda and J. Brest. 2014. Vectorized procedural models for animated trees
reconstruction using differential evolution. Information Sciences 278 (2014), 1–21.

[35] A. Zamuda and J. Brest. 2015. Self-adaptive control parameters’ randomization
frequency and propagations in differential evolution. Swarm and Evolutionary
Computation 25 (2015), 72–99.

[36] Aleš Zamuda and Janez Brest. 2018. On Tenfold Execution Time in Real World
Optimization Problems with Differential Evolution in Perspective of Algorithm
Design. In 2018 25th International Conference on Systems, Signals and Image
Processing (IWSSIP). IEEE, 1–5.

[37] A. Zamuda, J. Brest, B. Bošković, and V. Žumer. 2009. Differential Evolution with
Self-adaptation and Local Search for Constrained Multiobjective Optimization.
In IEEE Congress on Evolutionary Computation 2009. IEEE Press, 195–202.

[38] Aleš Zamuda and José Daniel Hernández Sosa. 2019. Success history applied to
expert system for underwater glider path planning using differential evolution.
Expert Systems with Applications 119, 1 April 2019 (2019), 155–170.

[39] A. Zamuda, J. D. Hernández Sosa, and L. Adler. 2016. Constrained Differential
Evolution Optimization for Underwater Glider Path Planning in Sub-mesoscale
Eddy Sampling. Applied Soft Computing 42 (2016), 93–118.

1828

https://arxiv.org/abs/1605.03560
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.4018/978-1-5225-0729-1
https://doi.org/10.4018/978-1-5225-0729-1

	Abstract
	1 Introduction
	2 Related Work
	2.1 100-Digit Challenge
	2.2 Population-based Optimization

	3 Proposed 100b-Digit Benchmark and DISHv Algorithm
	3.1 New Benchmark: 100b-Digit
	3.2 DISHv Algorithm

	4 Results
	5 Conclusions
	Acknowledgments
	References

